第 11 部分(1 / 6)
弥漫的朝鲜战场上,慷慨激昂地激励美军士兵打过鸭绿江。虽然科学是没有国界的,也没有主义之分,但伟纳科个人强烈的反共色彩给他的学术理论也笼罩上一层森严的政治阴影,当时以苏联为首的大部分社会主义国家,对他的理论一般不予承认,不提,提了也都是站在批判的立场上的。现在珍弟想证明他的理论,显然是逆潮流而行,太敏感,有政治风险。
然而,父亲不知是犯了知识分子的毛病,还是被珍弟列在提纲里的想法迷惑了,在大家都退而避之并希望他出面劝说珍弟改换选题的情况下,他非但不劝说,反而主动请缨,亲自当起珍弟论文的指导教师,鼓励他把选题做出来。
珍弟确定的选题是:《常数π之清晰与模糊的界线》,已完全不是本科学业内的选题,也许作为硕士论文的选题还差不多。毫无疑问,他这是从阁楼上的那些书里找来的选题——(未完待续)
论文第一稿出来后,小黎黎的热情更加高涨,他完全被金珍敏锐、漂亮而且符合逻辑的思维迷住了,只是有些证明他觉得过于复杂,需要作修改。修改主要是删繁就简,把有些无须证明的证明删了,对有些初级因而不免显得繁复的证明,尽量改用比较高级又直接的证明手段,那已经远远不是本科学业范围内的知识了。论文第一稿落成的文字有两万多,几经修改后,定稿时为一万多字,后来发表在《人民数学》杂志上,在国内数学界引起了不小的轰动。不过,似乎没人相信这是金珍一个人独立完成的,因为经过几次修改后,论文的档次再三被拔高,于是就越来越不像一篇本科生的毕业论文,而更像一篇闪烁着创立精神的学术论文。
总的说,金珍论文的优点和缺点都显得很明显,优点是它从圆周率出发,巧妙地应用伟纳科的数字双向理论,将人造大脑必将面临的困难和结症进行了纯数学的论述,感觉是有点把看不见的风抓住似的奇妙;缺点是文章的起点是一个假设,即圆周率为一个常数,所有惊人的猜想和求证都是在这个假设的前提下完成的,所以难免有空中楼阁的感觉。从某种意义上说,你要让楼阁落地,承认文章的学术价值,首先必须你坚信圆周率是一个常数。关于圆周率的常数问题,虽然早有科学家提出过,但迄今尚未有人证明它。现在数学界至少有一半人坚信圆周率是个常数,但在确凿的证明或证据尚未拥有的情况下,相信也只能是自我相信而已,不能要求他人相信,就像牛顿在发现树上的苹果自由落地之前,任何人都可以怀疑地球有引力一样。
本章未完,点击下一页继续阅读